IMOS Thermal Modeling

Mark Milman

Jet Propulsion Laboratory

California Institute of Technology

Integrated Modeling Workshop January 19, 1998

Pasadena, California

OVERVIEW

- IMOS thermal module objectives
- IMOS thermal model
- IMOS internal solver
- Future work

Objectives

- Try to please everybody (accomplish integrated modeling goals + retain standard thermal modeling procedures)... Work in Progress
- Develop Matlab based routines for defining/solving thermal models
 - Compatibility with structural model (automatic generation of conduction conductors)
 - Compatibility with thermal modeling methods and programs
 - Flexibility to allow user to create/modify elements of model (e.g. add radiator conductors, one-way nodes, etc.)
 - Solve steady state and transient problems
- Not a current objective to develop radiation conductors (although ability to generate input files for TRASYS from f.e. mesh is a goal)

Status

- Automatic conversion of beam and plate elements from restricted finite element geometry
- User defined thermal nodes and conductors can be added
- Temperature varying material conductance properties can be supplied by tabular input
- Steady state solver tested (includes radiation, temperature varying linear conductors)

Modeling — The IMOS Plate Element

- The IMOS plate element is a 2–D triangular element with no interior angle greater than 90°
- Why the restrictions?
 - Produces positive conduction elements that:
 - retain network characteristics, compatibility with standard methods
 - lead to "diagonally dominant" systems (functional iteration methods need this condition!)
 - Conductances can be generated from integral volume methods, i.e. each node is associated with a volume:
 - finite difference and finite element interpretation
 - leaves room for adding radiation conductors

Integral Volume Approach

Consider heat equation

$$\nabla \cdot (k\nabla u) = f$$

u = temperature.

k =thermal conductivity,

f = heat generation

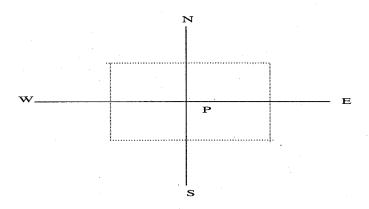
For region V with smooth boundary ∂V

$$\int_{V} \nabla \cdot (k\nabla u) dv = \int_{V} f dv.$$

Integral volume approach derived from Green's theorem:

$$\int_{V} \nabla \cdot (k \nabla u) dv = \int_{\partial V} k \nabla u \cdot n d\sigma$$

n = outward normal vector $d\sigma = \text{surface differential.}$ Example: Application to a finite difference approximation on uniform rectangular mesh



Control Volume in Uniform Mesh

Approximate $\nabla u \cdot n$ on east boundary by centered difference

$$\nabla u \cdot n \approx \frac{u(E) - u(P)}{h},$$

Analogous approximations on north, west south boundaries lead to

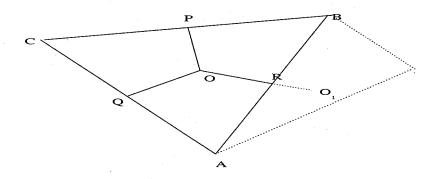
$$\int_{\partial V} k \nabla u \cdot n d\sigma \approx kt[u(E) + u(N) + u(W) + u(S) - 4u(P)], \quad t = \text{plate thickness}$$

Conductances between P and adjacent points are:

$$C_{PE} = C_{PN} = C_{PW} = C_{PS} = \frac{kA}{l},$$

where A = th cross-sectional area and l = h (distance between nodes)

Conductances for the Triangular Element



Control Volume Associated with Triangular Element

Q, R, and P = midpoints of segments AC, AB, and BC, respectively,

O= intersection point of perpendicular bisectors of $AC,\,AB,\,$ and BC

 V_0 = region bounded by the polygon AQOR.

 $V_0 = \text{control volume assoc.}$ with node A

Conductance Formula:

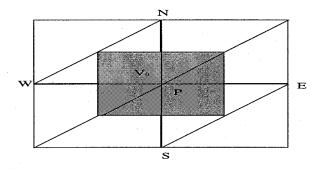
$$C_{AB} = kt \cot C/2$$
, $t = \text{plate thickness}$

Capacitance Formula:

$$V_0 = \frac{t(|AC|^2 \cot B + |AB|^2) \cot C}{8}$$

Plate Element Attributes

• Equivalent to 5-point Laplacian formula on regular mesh



- All conductors are positive when $\angle C \leq 90^{\circ}$
- ullet Equivalent to triangular plate element with picewise linear polynomial on irregular mesh

Steady State Solution Method

- Newton method with linesearch
- Takes advantage of Matlab matrix sparsity routines
- Uses approximation of system Jacobian (exact when there are no temperature varying materials)
- "Globally" convergent (in principle)

Steady State Solution Method

• Steady State Equation

$$F(T) + Q = 0;$$
 $F(T) = CT + RD(T)$

T = temperature

C = matrix of linear conductors

R = matrix of radiation conductors

$$D(T) = diag(T_1^4, ..., T_N^4)$$

Q = heat input

• Idea is to minimize $|F(T) + Q|^2$

Can show F(T) + Q = 0 has unique solution with T > 0...so iteration

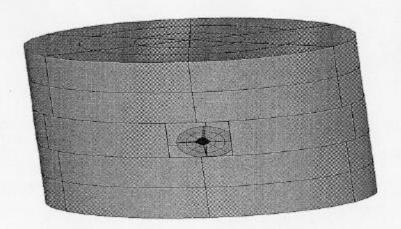
$$T(n+1) = T(n) + s(n)d(n);$$

with

$$d(n) = -F'(T(n))^{-1}F(T(n)), \quad s(n) = \text{steplength parameter}$$

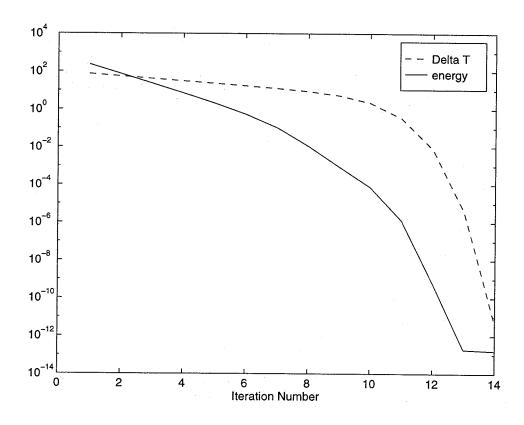
can be shown to be globally convergent (and ultimately quadratic)

Steady State Solver Example



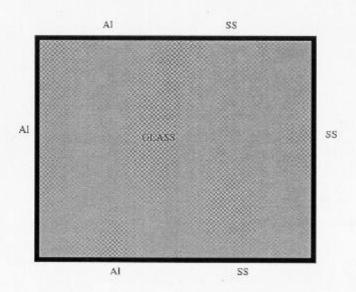
- \bullet 362 node system; 8978 radiation elements, 276 linear conductors
- Error tolerance set at 1.0e-8: Sum of energy imbalance + temp. change
- Room temperature initial conditions

Convergence of Steady State Algorithm



Convergence of temperatures and energy balance

Optimization Example



- Objective: control temperature to 310° at certain nodes (tempset) by applying heat to another set of nodes (heatset) with bounds on heat input
- Model Attributes
 - 20 nodes (3 boundary nodes)
 - Temperature varying materials
 - Radiation conductors

Solution Approach

• Solution approach: Nonlinear least squares problem

 T^* = desired temperature vector tempset= set of nodes to be controlled heatset= set of nodes at which heat is applied

$$\min_{Q} |T^* - T(tempset)|^2$$

such that

$$F(T) + Q = 0$$
, $0 \le Q(heatset) \le 10$, $Q(i) = 0, i \notin heatset$

Nonlinear optimization program *NPSOL* used to obtain solution:

$$Q^* = [1.313 \ .3622 \ .3622 \ 1.313],$$

 $T_{opt} = [310.2 \ 310.2 \ 310.4 \ 310.4 \ 310.4 \ 310.2 \ 310.2 \ 308.0]$

• Important Note: "Analytical" gradient of objective functional obtained from F'^{-1}

Future Work

- Transient solver (handle arithmetic nodes)
- TRASYS interface (others)
- One way nodes, code modifications (efficiency,...)
- Other stuff???... optimization package, ID package, submodeling, etc.